
Incompressible Navier-Stokes Baseline Performance
Measurement

P. Colella
D. F. Martin
N. D. Keen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

October 17, 2002

Benchmark Problem Description

The algorithm is described in a separate document entitled ”Incompressible Navier-Stokes
Software Design Document”.

To evaluate the performance of the incompressible Navier-Stokes AMR code, we use
two co-rotating vortex rings in three dimensions. For this problem, the vorticity distribution
is specified, and the initial velocity is then computed based on the initial vorticity field.
Each vortex ring is specified by a location of the center of the vortex ring (x0, y0, z0), the
radius of the center of the local cross-section of the ring from the center of the vortex
ring r, and the strength of the vortex ring Γ.

The cross-sectional vorticity distribution in each vortex ring is given by

ω(ρ) =
Γ

aσ2
e(ρ

σ
)3 (1)

where ρ is the local distance from the center of the ring cross-section, a = 2268.85, and
σ = 0.0275.

For this problem, the first vortex ring is centered at (0.5, 0.5, 0.4), with a radius of
0.2, and strength Γ of 1.5. The second vortex ring is centered at (0.5, 0.5, 0.65), with a
radius of 0.25 and a strength Γ = 1.0.

This document presents serial profiling and parallel performance results for a given
input to the incompressible Navier-Stokes AMR code. The physical domain size of the
primary problem investigated in the work is 32x32x48. There are 3 levels of refinement in
the AMR grid hierarchy, with a factor of four refinement between each pair of levels. The
refinement tagging is based on the vorticity magnitude

The inputs file for the 32× 32× 48 benchmark run is shown in Figure 1.

Target Platform and Compilers

The target platform for this benchmark measurement is a machine named named Halem
located at GSFC. Halem is the NCCS Compaq AlphaServer SC45 System and it currently
consists of 416 user-available processors. The halem processors are clustered into 104
symmetric multiprocessor nodes (4 processors per node). An additional set of 12 nodes is
allocated as system and spare nodes. Halem is a hybrid system in the sense that memory
is distributed among nodes, but within a node memory is shared.

The Fortran compiler used for this was the native Fortran compiler f77 with the -fast
optimization flag. The C++ compiler used was the GNU g++ compiler (version 3.1) with
flags as -O2 -ftemplate-depth-27 -Wno-long-long.

Profiling Methodology

The primary metric used in this performance analysis work is wall-clock time of various
units and sections of the code. The standard C function gettimeofday() is used to

1

size=32x32x48 factor=50 timesteps=4 regrid_interval=4

main.max_step = 4

main.max_time = 200.0

main.num_cells = 32 32 48

main.max_level = 2

main.ref_ratio = 4 4 4

main.regrid_interval = 4 4

main.block_factor = 8

main.max_grid_size = 32

main.fill_ratio = 0.8

main.grid_buffer_size = 1

main.is_periodic = 0 0 1

main.cfl = 0.5

main.checkpoint_interval = -1

main.plot_interval = 0

main.plotPrefix = pltNew.

main.verbosity = 2 # higher number means more verbose

ns.vorticity_tagging_factor = 0.0050

ns.init_shrink = 1.0

ns.tag_vorticity = 1

ns.project_initial_vel = 1

ns.init_pressures = 1

ns.num_init_passes = 1

ns.tags_grow = 1

#initial grids

ns.specifyInitialGrids = 0

ns.initVelFromVorticity = 1

ns.viscosity = 0.000001

ns.num_scalars = 1

ns.scal_diffusion_coeffs = 0.00

projection.eta = 0.9

this is physical BC info

0 = solidWall, 1=inflow, 2=outflow, 3=symmetry, 4=noShear

physBC.lo = 4 4 4

physBC.hi = 4 4 4

physBC.maxInflowVel = 1.0

Figure 1: Inputs file for 32× 32× 48 benchmark problem.

2

obtain the wall-clock time. This method is robust and has a resolution of approximately
one microsecond on the target machine.

Another interesting metric is the number of floating-point operations executed per
unit of time for a given section of code. This metric is often referred to as the number of
MFLOPS (million floating-point operations per second). A common tool used to measure
hardware events such as floating-point instructions is PAPI. Currently, the target platform
does not have PAPI installed or other tools to measure hardware events. To approximate
a floating-point operation rate, we can first obtain the total number of floating-point
instructions issued on another platform with PAPI installed and assume that this will be
similar to the actual number obtained on the target machine. These values will be different
because of compiler and instruction set differences. With the number of floating-point
operations for a given section of code, the wall-clock time can be measured on the target
machine, and an approximate MFLOP value can be computed. The wall-clock time will
be slightly greater than the actual cycle time used, but again, without hardware counters
to measure the number of cycles, this is an approximation. The machine used to count
the number of floating-point instructions issued was a Pentium III chip with a clock rate
of 900 MHZ. The GNU compilers were used on this platform.

Uniprocessor Performance

The driver for the Incompressible Navier Stokes code resides in main.cpp and controls
setting up the AMR problem and calling the function that begins the computational
solution of the problem. The following table shows timing measurements of these two
sections of code for the benchmark problem. We use a boldface font to indicate a label
for a section of code that is timed.

Code wall-clock percent average
Section seconds of total MFLOPS

Setup AMR 214 4.1 91
Run AMR 4822 94.2 107

totals 5120 98.3

Table 1: Profile of Top Level Driver

The Setup AMR section is executed once and cost of this section overhead is roughly
equivalent to one coarse time step. Measurements of problems that use a large number
of coarse time steps will show that this overhead is insignificant compared to the the total
execution time. Therefore, the total run time can be approximated as that measured in
the Run AMR section.

Over the entire execution, Run AMR can be broken into three distinct sections: Level
Advance, Synchronization, and Regrid. The following tables shows the profile of these
three sections of code that comprise Run AMR for the benchmark problem:

3

Code wall-clock percent average
Section seconds of parent MFLOPS

Level Advance 3135 65.0 108
Synchronization 1318 27.3 101

Regrid 365 7.6 111
totals 4818 99.9

Table 2: Profile of AMR Run

In general, the timing profile for an AMR problem will largely depend on the problem
and the input parameters. For example, using Chombo with an input that requests more
regridding steps will certainly generate a timing profile that shows more time expended
in the Regrid section. The maximum number of AMR levels allowed can also affect the
profile. For this particular ring problem, the expense of each time step is very sensitive to
the vorticity tagging factor. The timing results are presented in a series of tables:

Timed percent of total
Code Sections AMR Run seconds
Level Advance 65.0 3135

Compute Adv Vel 17.8 851
Trace State 3.4 165
Level MAC Proj 14.2 683

Advect Scalars 4.1 199
Advect Diff Scalars 4.1 198
Predict Velocities 6.5 315
Compute Ustar 17.4 839

Viscous Solve 1 5.8 280
Viscous Solve 2 5.8 280

Level Projection 15.1 726
Synchronization 27.3 1318

Implicit Reflux 9.2 445
Composite Proj 9.1 438
Freestream Corr 8.3 400

Regrid 7.6 365
Init Velocity Proj 1.3 65
Init Global Pressure 4.8 231
Post Regrid Ops 1.1 55

Table 3: Profile of AMR Run

The peak memory used for the 32x32x48 problem was about 380MB for a serial run.
The 64x64x96 problem used as much as 2080MB of memory in serial.

4

Timed Pseudo-Code
Code Sections Step

Level Advance section 2.7.2
Compute Adv Vel step 1
Trace State step 1a
Level MAC Proj steps 1b,1c
Advect Scalars step 2
Advect Diff Scalars step 2
Predict Velocities step 3a
Compute Ustar steps 3b,3c,3d
Viscous Solve 1 step 3c
Viscous Solve 2 step 3d
Level Projection step 4

Synchronization Section 2.7.2, step 6
Implicit Reflux step 6a
Composite Proj step 6b
Freestream Corr step 6c

Regrid section 2.7.3
Init Velocity Proj step 1
Init Global Pressure step 2
Post Regrid Ops step 3

Table 4: Matching Timed Sections with Pseudo-Code in Software Design Document

Code wall-clock percent average
Section seconds of total MFLOPS

Viscous Solve 404 7.9 108
Sync Projection Solve 412 8.0 106

Freestream Correction Solve 447 8.7 113
Init Velocity Projection Solve 83 1.6 119

Init Data Solve 96 1.7 101
totals 1432 28.0

Table 5: Diagnostic Multi-Level AMR Solves

The results for the regular-grid operations are an attempt to measure all of the work
done in inner regular-grid loops. However, to directly measure these sections of code
required calling the timing functions a very large number of times. The timing functions
themselves have a small expense associated with them and therefore total execution time
for the code was increased when these diagnostic measurements were in place. The
total wall-clock time for AMR Run with these fine-grained diagnostic measurements was

5

Code wall-clock percent average
Section seconds of total MFLOPS

Init Viscous Solves 59 1.2 134
First Viscous Solve 280 5.5 139

Second Viscous Solve 280 5.5 139
MAC Projection Solve 668 13.0 140

Projection Solve 728 14.2 140
totals 2014 49.3

Table 6: Diagnostic Single-Level AMR Solves

Code N wall-clock mod wall- percent avg.
Section hits seconds clock seconds of tot MFLOPS

GSRBLEVLLAP 300848 491 491 10.2 360
GSRBLEVELHELM 2884992 165 163 3.4 397
other Fortran funcs 6245340 344 340 7.1 347
FArrayBox funcs 250428952 908 743 15.4 37

totals 259860132 1908 1736 36.1 203

Table 7: Regular-Grid operations (Fortran routines)

increased by 343 seconds for the benchmark problem. In an effort to account for this
inaccuracy, we have modified the wall-clock time spent in each of the timed code sections
or group of timed sections. First we assume that the increase in wall-clock time is due
solely to the expense of large numbers of timing measurements. Then we assume that
half of the expense of a single timing measurement is counted toward the section of code
under measurement. Using these assumptions, we have modified the measured wall-clock
time of the timed sections by subtracting the following amount:

∆sub =
∆diff

2

Nsection

Ntotal

, (2)

where in this case ∆diff = 343 seconds and Ntotal = 259860132.
By way of calibration, we obtained and compiled two common LINPACK benchmarks

on several platforms. The LINPACK source was not modified for either size of problem.
The compiler used on the Compaq machine is the native Fortran compiler with the -fast
option. For all other platforms, the GNU Fortran compiler was used with flags -O3

-fomit-frame-pointer -funroll-loops.

6

Machine N=100 N=1000 PEAK
Compiled Compiled MFLOPS
MFLOPS MFLOPS

Compaq ES45 703 656 2000
Intel P4 2200 MHZ 698 249 4400

AMD Athlon Thunderbird 1.4GHZ 650 92 2800
Intel P3 933 MHZ 345 55 933

Table 8: Compiled LINPACK Results for Machines of Interest

Parallel Performance

To measure the parallel performance of the code, the benchmark problem was run using
1, 4, 16, and 32 processors. The rate column in the table is the total number of points or
cells updated in the entire problem divided by the number of processor-seconds, which is
simply the wall-clock time multiplied by the number of processors. We also include results
for a larger problem of size 64x64x96 with a factor of two decrease in the vorticity tagging
factor. The rate would be constant for all problem sizes and number of processors if the
parallel scaling of the code was perfect.

Prob size Vort Tagging N Points N AMR Run rate (points/ unscaled
Factor Updated Procs time (sec) sec-proc) speedup

32x32x48 0.0050 35864576 1 4833 7421
32x32x48 0.0050 35864576 4 1360 6593 3.6
32x32x48 0.0050 35864576 16 571 3926 8.5
32x32x48 0.0050 35864576 32 403 2781 12.0
64x64x96 0.0025 190840832 1 39638 4815
64x64x96 0.0025 190840832 16 3019 3951 13.1
64x64x96 0.0025 190840832 32 2699 2210 14.7
64x64x96 0.0025 190840832 64 1988 1500 26.2

Table 9: Parallel Scaling

7

